
A Learning-Based Framework for Safe Human-Robot Collaboration
with Multiple Backup Control Barrier Functions
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Abstract— Ensuring robot safety in complex environments is
a difficult task due to actuation limits, such as torque bounds.
This paper presents a safety-critical control framework that
leverages learning-based switching between multiple backup
controllers to formally guarantee safety under bounded control
inputs while satisfying driver intention. By leveraging backup
controllers designed to uphold safety and input constraints,
backup control barrier functions (BCBFs) construct implicitly
defined control invariant sets via a feasible quadratic program
(QP). However, BCBF performance largely depends on the
design and conservativeness of the chosen backup controller, es-
pecially in our setting of human-driven vehicles in complex, e.g,
off-road, conditions. While conservativeness can be reduced by
using multiple backup controllers, determining when to switch
is an open problem. Consequently, we develop a broadcast
scheme that estimates driver intention and integrates BCBFs
with multiple backup strategies for human-robot interaction.
An LSTM classifier uses data inputs from the robot, human,
and safety algorithms to continually choose a backup controller
in real-time. We demonstrate our method’s efficacy on a dual-
track robot in obstacle avoidance scenarios. Our framework
guarantees robot safety while adhering to driver intention.

I. INTRODUCTION

Safety filters are useful control tools that allow a robot
to remain safe while under actuation from a potentially
unsafe controller, or driver. Safety filters accomplish this
by minimally affecting desired control commands, and thus
have become a popular add-on to robot control architectures
[1]–[3] since they address real-world robot dynamics and
kinodynamic constraints in a run-time fashion.

Control barrier functions (CBFs) [4] are a popular method
for constructing safety filters due to their ability to integrate
nonlinear dynamics while providing formal safety guaran-
tees. A CBF-based safety filter requires defining a control-
invariant set that ensures safety. However, such sets can be
difficult to construct with input constraints in mind [5]–[11].

Consequently, the CBF framework has been extended to
include actuation capability, such as torque limits, through
the use of backup control barrier functions (BCBFs) [12]–
[14]. BCBFs rely on the formulation of a backup controller,
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2E. Daş, S. X. Wei, T. Thouma, and J. W. Burdick are
with the Department of Mechanical and Civil Engineering,
California Institute of Technology, Pasadena, CA 91125, USA.
{ersindas, ttouma, swei, jburdick}@caltech.edu

3T. Molnar is with the Department of Mechanical Engineering, Wichita
State University, Wichita, KS 67260, USA. tamas.molnar@wichita.edu

Fig. 1. Visualization of the proposed safety-critical control frame-
work with desired robot behavior. The red, green, and blue arrows
represent different trajectories that rely on different backup con-
trollers, with corresponding colors, to guarantee safety. Using driver
intention tracking, the correct, green, backup controller is chosen
among the red and blue controllers in order to guide the driver to
their desired location. A supplementary video can be found here:
https://youtu.be/41Jh1GD_9Ok

which is designed with input limits in mind to guarantee
safety.

The backup controller typically involves a simple saving
maneuver, such as coming to a stop, turning at a maximum
rate, or hovering. By calculating the future backup trajectory
of the system, one can analyze future safety of the robot
and incorporate this information into optimization-based
controllers like quadratic programs (QPs). Consequently,
when constructing safety filters using the BCBF method, the
system’s conservativeness is a strong function of the control
engineer’s choice of backup policy.

To address this limitation, recent work examines the use
of multiple backup strategies in the BCBF framework, since
multiple strategies can help overcome the conservativeness
of a single strategy. In [15], an algorithm is used to evaluate
the BCBF method with multiple backup controllers, such that
the one with the least control intervention can be chosen.
However, with many backup controllers, this method could
be computationally infeasible. In [16] and [17], different ma-
neuvers are proposed to increase the reachability of a given
backup controller, where a switching algorithm chooses a
different maneuver if it is no longer possible to perform
the current maneuver. While this method used multiple

https://youtu.be/41Jh1GD_9Ok


backup maneuvers with more computationally efficient ways
of solving BCBFs, it is better suited to fully autonomous
systems. It does not explicitly provide, in a human-robot
interaction context, a way to take into account the intentions
of a human vehicle driver or human companion. Nor does it
account for the fact that the human operator may have better
situational awareness than the autonomous controller. Even
though autonomous selection may be suboptimal at times, the
backup control strategy is often fixed and independent of the
driver’s preferred nature of safety-critical behavior. Gener-
ally, the types of safe behavior utilized by the BCBF cannot
be tuned, leading to situations where potentially preferred
safe behaviors are filtered out by the BCBF framework.

There has been impressive previous work to include
human preferences in safety filters. For instance in [18],
preference-based learning is used to adapt tuneable pa-
rameters of a CBF to user preferences for autonomous
obstacle avoidance on a quadruped. However, input bounds
are not formally considered, which could potentially result
in infeasibility and consequently unsafe trajectories. While
there has also been work on preference based reinforcement
learning (pbRL) [19], these methods must sample trajectories
within the expected environment [20]. Since the drivers of
teleoperated systems must provide control inputs at each
timestep, trajectory sampling becomes difficult to complete
due to the human-in-the-loop nature of the problem.

In order to intelligently pick backup controllers, we pro-
pose a system that utilizes a long short term memory (LSTM)
and a deep neural network (DNN) component to learn a
reward corresponding to each backup controller. LSTMs
have been used in real-time driver intention and maneuver
tracking, and have shown to be successful at regression and
classification tasks with trajectory input [21]–[23]. A simple
switching law is derived by using the controller with the
largest reward in the BCBF framework. This system learns to
estimate driver intention by training on example trajectories,
labeled with the correct choice of backup controller, as
provided by the driver. In our work, we show that

1. The LSTM-DNN architecture effectively learns a
switching law for the BCBF framework with multiple
backup controllers–choosing the controller closest to the
driver’s preference.

2. Our approach increases the reachable sets of the
driven robot while maintaining the safety guarantees of
BCBFs.

Moreover, we present experimental implementations of our
algorithms on a tracked robot. These experiments demon-
strate that switching between new and previously formulated
backup controllers based on estimated driver intention can
work on actual hardware systems.

This paper is organized as follows. Section II presents
preliminaries on CBFs, BCBFs, and DNNs. Section III
presents our contributions, including a description of system
architecture. We present the implementation of our frame-
work on hardware in Section IV and discuss experimental
results in Section V. Section VI concludes the paper.

II. PRELIMINARIES

We consider robots governed by a general nonlinear con-
trol affine system:

ẋ = f(x) + g(x)u, (1)

where x ∈ Rn is the state, u ∈ U ⊂ Rm is the control
input, and functions f : Rn → Rn, and g : Rn → Rn×m are
locally Lipschitz continuous. A locally Lipschitz continuous
controller k : Rn → U yields a locally Lipschitz continuous
closed-loop control system, fcl : X → Rn:

ẋ = f(x) + g(x)k(x) ≜ fcl(x). (2)

Given an initial condition x0 ≜ x(t0) ∈ Rn, this system has
a unique solution given by the flow map

ϕ(t, x0) ≜ x(t) = x0 +

∫ t

t0

fcl(x(τ))dτ, t > t0. (3)

A. Control Barrier Functions

To characterize safety, we consider a safe set C ⊂ Rn de-
fined as the 0-superlevel set of a continuously differentiable
function h : Rn → R:

C ≜ {x ∈ X ⊂ Rn : h(x) ≥ 0} ,
∂C ≜ {x ∈ X ⊂ Rn : h(x) = 0} ,

(4)

where ∂C is the boundary of set C. This set is forward
invariant if, for every initial condition x(0) ∈ C, the solution
of (2) satisfies x(t) ∈ C, ∀t ≥ 0. The closed-loop system (2)
is called safe w.r.t. set C if C is forward invariant [4].

Definition 1 (Control barrier function [4]). Function h is a
CBF for (1) on C if ∂h

∂x ̸= 0 for all x ∈ ∂C and there exists an
extended class-K∞ function* α ∈ K∞,e such that ∀x ∈ C:

sup
u∈U

[
ḣ(x, u)=

∂h(x)

∂x
f(x)+

∂h(x)

∂x
g(x)u

]
≥−α(h(x)). (5)

Theorem 1. [4] If h is a CBF for (1) on C, then any locally
Lipschitz continuous controller k : Rn → U satisfying

ḣ (x,k(x)) ≥ −α(h(x)), ∀x ∈ C (6)

renders (2) safe with respect to C.

B. Backup Control Barrier Functions

BCBFs are motivated by the fact that finding a function h
satisfying the CBF condition (5), which is required for the
feasibility of (6), may be challenging for a particular choice
of h, especially with bounded inputs. Consider input bounds
with component-wise hard constraints:

U ≜ {u ∈ Rm : −umax ≤ u ≤ umax} , (7)

where umax ∈ Rm
>0.

The backup set method [12]–[14] addresses this feasibility
problem by designing implicit control invariant sets and safe
controllers through a CBF framework.

*A continuous function α : R → R belongs to the set of extended class-K
functions (α ∈ K∞,e) if it is strictly monotonically increasing, α(0) = 0,
α(r) → ∞ as r → ∞, α(r) → −∞ as r → −∞.



We consider a backup set Cb⊂Rn defined as the 0-
superlevel set of a smooth hb : Rn→R:

Cb ≜ {x ∈ Rn : hb(x) ≥ 0} , (8)

such that it is a subset of C, i.e., Cb ⊆ C, and ∂hb

∂x ̸= 0 for
all x ∈ ∂Cb. Practically speaking, the backup set and backup
controller are easily characterized safety procedures that can
keep the vehicle in a strict subset of the maximally feasible
safe set, which may be impossible to characterize in practice.

We assume that there is a locally Lipschitz continuous
backup controller kb : Rn → U , which satisfies (7) for all
x ∈ C, to render the backup set forward invariant. This results
in the locally Lipschitz continuous closed-loop

ẋ = f(x) + g(x)kb(x) ≜ fb(x), (9)

and its solution with the initial state x0 ∈ Rn is

ϕb(t, x0) ≜ x(t) = x0 +
∫ t

t0

fb(x(τ))dτ, t > t0. (10)

Designing a control invariant backup set Cb is generally
easier than verifying if C is control invariant. However, the
methods used to develop Cb may result in a conservative set
[5]. We can reduce conservatism by expanding the backup
set. To achieve this, we use the backup trajectory ϕb(τ, x)
over a finite time period τ ∈ [0, T ] with some T ∈ R>0.

Note that ϕb(τ, x) is the flow map of the system under the
backup controller with the initial condition x. We define a
larger control invariant set, called CE , such that Cb⊆CE⊆C:

CE ≜

{
x ∈ C

∣∣∣∣∣
≜h̄τ (x)︷ ︸︸ ︷

h(ϕb(τ, x)) ≥ 0, ∀τ ∈ [0, T ],
hb(ϕb(T, x))︸ ︷︷ ︸

≜h̄b(x)

≥ 0

}
. (11)

That is, CE is the set of initial states from where the system
can use a T -length feasible controlled trajectory (that satisfies
the input constraints and respects the system dynamics) to
safely reach Cb. We note that the input limits are satisfied
since they are incorporated into the set CE via kb. In (11),
the first constraint implies that the flow under the backup
controller satisfies the safety constraints, and the second
constraint enforces that the backup set is reached in time
T . To guarantee safety with respect to CE , we enforce the
following constraint for all x ∈ CE :

≜Lf h̄τ (x)︷ ︸︸ ︷
∂h(ϕb(τ, x))

∂ϕb(τ, x)

∂ϕb(τ, x)

∂x
f(x)+

≜Lg h̄τ (x)︷ ︸︸ ︷
∂h(ϕb(τ, x))

∂ϕb(τ, x)

∂ϕb(τ, x)

∂x
g(x)u

≥ −α(h(ϕb(τ, x))), ∀τ ∈ [0, T ],

∂hb(ϕb(T, x))

∂ϕb(T, x)

∂ϕb(T, x)

∂x
f(x)︸ ︷︷ ︸

≜Lf h̄b(x)

+
∂hb(ϕb(T, x))

∂ϕb(T, x)

∂ϕb(T, x)

∂x
g(x)︸ ︷︷ ︸

≜Lg h̄b(x)

u

≥ −αb(hb(ϕb(T, x))).
(12)

Theorem 2. [12] Any Lipschitz continuous controller that
satisfies (12) keeps the closed loop system (2) safe with
respect to CE , which implies x(t)∈CE⊆C,∀t≥0 if x0∈CE .

Note that enforcing the first constraints in (12) is not
computationally tractable, as it must hold for all τ ∈ [0, T ].
The constraint can be discretized to a finite collection of
constraints and then can be directly used for controller
synthesis via the following quadratic program (BCBF-QP):

k∗(x) = argmin
u∈U

∥u− kd(x)∥2

s.t. Lf h̄τi(x)+Lgh̄τi(x)u≥−α(hτi(x))

Lf h̄b(x)+Lgh̄b(x)u≥−αb(hb(x)),

(13)

for all τi = iT/Nτ , i = 0, 1, . . . , Nτ , where Nτ ∈ N is the
number of constraints, and kd(x) : Rn → U is a desired con-
troller. In the upcoming experiments, the desired controller
is given by the human operator’s vehicle velocity commands.

C. Deep Neural Networks

We consider an NL-layer deep neural network (DNN),
Π : Rnx → Rny , which is a piecewise linear function and
maps an input feature vector x̄ ≜ (x̄1, . . . , x̄nx) ∈ Rnx to
an output vector ȳ ≜ (ȳ1, . . . , ȳny

) ∈ Rny , given by

υȷ = πȷ(W̄ȷυȷ−1 + bȷ), ȷ = 1, . . . , NL,

Π(x̄) = ȳ,

owhere υȷ is the output of the ȷ-th layer of the DNN, and
υ0 = x̄ is the input to the DNN and υNL

= ȳ is the output
of the DNN, respectively. Each hidden layer has nȷ ∈ N
hidden neurons. W̄ȷ ∈ Rnȷ×nȷ−1 and bȷ ∈ Rnȷ are weight
matrices and bias vectors for the ȷth layer, respectively.
πȷ ≜ [ϱȷ, · · · , ϱȷ] is the concentrated activation functions of
the ȷth layer wherein ϱȷ : R → R is the activation function,
such as sigmoid or ReLU:

ϱsigmoid(x̄j) ≜
1

1 + e−x̄j
, ϱReLU(x̄j) ≜ max(0, x̄j).

III. FRAMEWORK

For organizational purposes, the following sections that
describe our framework use the following definitions

– K is a set of mk∈N backup controllers such that
controller kbi∈K renders a backup set Cbi⊆C forward
invariant

– κ :R≥0 → Z is a function that identifies the index of
the chosen backup strategy as a function of time.

– γt,κ(t)∈Rk is a vector of k∈N features–robot state,
environment, driver input, and safety data–collected
while the BCBF framework utilized controller kbκ(t).

– We maintain an H+1-length data history
Γ⃗(t,H, κ)=

(
γt,κ(t), γt−1,κ(t−1), . . . , γt−H,κ(t−H)

)
.

See that the chosen backup controller may change
over the length of the history; it may also remain
the same (for instance, κ(t) may or may not equal
κ(t− 1)). Additional details on Γ⃗(t,H, κ) are found in
the following discussion.

– R : Rk×(H+1) → Rmk is a reward function that maps
input history Γ⃗(t,H, κ) to a list of mk rewards with
values ranging from 0 to 1.



Fig. 2. Cross entropy and training loss during a training episode.
Accuracy is calculated by comparing the maximum reward ouput
from the LSTM-DNN architecture and determining if it corresponds
to the correct choice of backup controller for the respective point
in the training set. We also use a validation (test) dataset to observe
out-of-sample performance of the network during training. The
network achieves 97% accuracy by the 30th epoch.

We use a unicycle model to capture the tracked robot’s
motion, given byẋI

ẏI
θ̇


︸ ︷︷ ︸

ẋ

=

00
0


︸︷︷︸
f(x)

+

cos θ 0
sin θ 0
0 1


︸ ︷︷ ︸

g(x)

[
v
ω

]
︸︷︷︸
u

, (14)

where p=[xI yI ]
⊤ is the vehicle’s planar position w.r.t. the

inertial frame I , θ is vehicle’s yaw angle, −vmax≤v≤vmax

is its linear velocity and −ωmax≤ω ≤ωmax is the angular
velocity. While we describe our intention estimator in the
context of the unicycle model, we believe that our system can
generalize to more complex dynamical models. This is the
subject of future experimentation as detailed in Section VI.

A. Intention Estimation

We employ an intention estimation framework to learn
the reward function, R. Learning is useful in this context
since constructing a reward function based on multi-modal
input in high dimensions may be challenging. The feature
vector at a single timestep, γt,κ(t), consists of the robot posi-
tion [xI , yI , zI , θ] ∈ R4, robot velocities [ẋI , ẏI , żI , θ̇] ∈ R4,
driver velocity commands u ∈ U , and safety information
from evaluating h : R3 → R at x and at xg ∈ R3, which is
an intermediate goal determined by forward integrating the
driver’s desired u over a short horizon. These quantities are
measured and calculated while the BCBF safety filter wtih
backup controller kbκ(t) is influencing the robot trajectory.
Hence, κ(t) is designated to the feature vector γt,κ(t) to
indicate this dependence. Note that γt,κ(t) can contain many
more features than detailed here in other implementations,
especially if they relate to the safety of the robot. However,
the aforementioned features generalize to any robot using
our implementation. We wish to learn R by mapping history
Γ⃗(t,H, κ) to rewards corresponding to each potential backup
controller kbκ(t+1) at next timestep t+1. This process allows
us to derive switching laws for the next backup controller
as a function of time. For instance, we may choose the
backup controller with the largest reward at time t+1 where
κ(t + 1) = argmax(R(Γ⃗(t,H, κ)). This recursive formula-

tion necessitates that we initialize κ(t0) such that the robot
begins in the safe control invariant set CE corresponding to
backup controller kbκ(t0)

We use a deep LSTM network with a DNN decoder to
construct R from history γ⃗(t,H, κ). Deep LSTMs can learn
complex temporal relationships by using multiple layers and
cyclic connections to understand sequential data, and the
DNN decoder maps the output of the LSTM to rewards
for each backup controller through several hidden layers.
Both the LSTM and DNN utilize dropout for regularization,
and the DNN uses ReLU activation functions in the hidden
layers. Furthermore, we use the sigmoidal activation function
in the DNN final layer. Thus, the outputted rewards for each
backup controller, kbi, at time t (where i is the index of the
output of R) can be interpreted very loosely as a likelihood
that kbi is the desired backup controller choice at time t.
For example, if our framework is highly certain that the
human operator believes kb0 is the correct choice of backup
controller at time t, then the first component of the output
of R(γ⃗(t,H, κ)) is expected to be close to 1.

Our strategy and architecture enables easy reward en-
gineering for the training dataset. We construct a multi-
class dataset by gathering data of the robot driving in
suitable environments under the correct backup controllers.
During data collection the robot should be operating with
a BCBF safety filter as we plan to evaluate the network
in safety-critical contexts. During training, the switches be-
tween backup controllers are labeled in the dataset by the
driver using configurable buttons on the robot ground station.
Labeling is completed by assigning 1 to the driver’s choice of
backup controller and 0 to all others for that instance. Since
we utilize the sigmoidal activation function in this multi-class
classification learning task, we use the softmax loss function
to train the network. Indeed, this training procedure makes an
implicit assumption that there exists a single, correct choice
of backup controller at any given time. While this may not
be true in certain situations, we guarantee safe switching as
discussed in Section III-B. Thus, any safe switch between
backup controllers, does not void safety guarantees.

To improve training, we utilize the Adam optimizer [24]
with a stepped learning rate scheduler. In order to compen-
sate for the time it takes to solve the BCBF-QP, we shift the
labels for the desired backup controller backwards in time.
This allows the predicted backup strategy to be preemptively
passed into the BCBF-QP, allowing time for the BCBF-QP
to have computed safe control outputs for the new controller
when they are expected.

We present the model parameters used in our final imple-
mentation and training iteration shown in Fig. 2. We used
a 2 layer LSTM with 100 hidden units with the 12 total
input features detailed earlier. Our DNN is composed of two
hidden layers of sizes 50 and 25 neurons, respectively. We
use a dropout value of 0.2 for the hidden layers of the DNN
and a dropout of 0.1 for the LSTM. Accuracy is calculated
by comparing the maximum reward output from the LSTM-
DNN architecture and determining if it corresponds to the
correct choice of backup controller for the respective point



in the training set. We also use a validation (test) dataset
to observe out-of-sample performance of the network during
training. The network achieves 97% accuracy by the 30th
epoch. We achieved this accuracy on a dataset of 19000
datapoints collected on hardware. The sequence length for
the training samples of the model was chosen to be 15
timesteps, which corresponds to roughly 0.75 seconds of
data. We found that this time-range produced the most
accurate results.

B. Backup Control Barrier Function Modification

Safety must be preserved when switching between backup
controllers. Consider a switch from backup controller kbi

to kbj. One way to ensure safety during this crossover
is to evaluate constraints (12) for the new controller kbj.
Since we were previously using backup strategy kbi, we are
guaranteed to be in the T -time reachable set of the first con-
troller. Thus, validating that the BCBF-QP constraints hold
for kbj, practically requires that both backup controllers’ T -
time reachable sets intersect, and allows the BCBF-QP to
remain solvable before and after the transition. As observed
in our implementation ( IV), this resulted in relatively smooth
switching between backup strategies.

C. Human Interface

Since we extract an intention estimation signal from the
human driver, providing feedback is essential for improving
human-robot collaboration. Past work has suggested that
systems which allow robots to estimate human intention,
while their collaborating humans estimate robot intention,
can improve overall performance [25]. Thus, we develop
an interface based on the ROS rviz visualization tool as
well as an Xbox controller featuring haptic motors. The rviz
system displays a visualization of the robot pose, along with
dials that indicate estimated system safety, as quantified by
the magnitude of the saturated safety function tanh(h(x)).
Furthermore, vibratory haptic feedback is provided to the
user when the robot nears the boundary of the safe set
(indicated with h). We tune the the thresholds and strength
of the haptic feedback as preferred by the driver.

IV. IMPLEMENTATION

The aforementioned framework was deployed in a simple
obstacle avoidance task in a 2D environment. The robot
position is measured from its center, so a buffer radius is
given to the circular obstacle (a traffic cone) to account for
half the length of the robot. The robot is driven to various
locations around the environment to assess the accuracy of
our framework to predict the desired backup strategy.

A. Hardware

Our algorithms are deployed on a tracked GVR-Bot from
US Army DEVCOM Ground Vehicle Systems Center. The
GVR-Bot is a modified iRobot PackBot 510 and its rugged
design and quick actuation makes it ideal for research of
safety in the presence of unknown human driver intentions.
Our Python and C++ algorithms run on a custom compute

Fig. 3. Our test-vehicle (US Army DEVCOM GVR-Bot robot) in
the NASA Jet Propulsion Laboratory Mars Yard. (yellow inset)
Intel Realsense D457 Depth Cameras are coupled with a VN-100
IMU, (light− blue inset) custom compute payload.

payload that is based on an NVIDIA Jetson AGX Orin (2048-
core NVIDIA Ampere architecture, 64 Tensor Cores, 275
TOPS, 12 Core Arm Cortex A78AE @ 2.2GHz, 32GB Ram).
Vision is provided by three synchronized Intel Realsense
D457 Depth Cameras which are strategically positioned to
provide a wide field of view for the control system and
operator. They operate at a 30 Hz frame rate. A Vectornav
VN-100 provides inertial measurements. Communication be-
tween our algorithm, the control computer, and the internal
GVR-Bot drive computer (Intel Atom) is facilitated via
ROS1. Estimation of the vehicle state is provided by an
OpenVINS visual-inertial estimator [26]. Drive commands
(linear and angular body velocities) are communicated from
the AGX Orin to the Intel Atom where they are converted
into individual track speeds, which are regulated via high-
rate controllers on the GVR-Bot, see Fig. 1 and Fig. 3.

B. Backup Controllers

For safety, the tracked robot must avoid moving obstacles,
considered as cylinders with radius Ro ∈ R>0, position
po ∈ R2 and velocity vo ∈ R2. This leads to the safety
constraint h(x) ≥ 0, with the CBF candidate given by

h(x) = ∥p− po∥ −Ro.

We enforce safety in the presence of input bounds by
implementing multiple BCBFs. We leverage three backup
controllers that yield qualitatively different behavior. Con-
troller kb0 turns the robot away from the obstacle and drives
forward. Controller kb1 drives straight away as the obstacle
is approached, without turning. Controller kb2 turns towards
the obstacle and drives in reverse. It behaves similarly to kb0,
however the robot has turned around. These are expressed by:

kb(x) =

[
vmax

ωmax tanh(n
T r/ε)

]
, h0(x) = nT (qvmax − vo),

kb1(x) =

[
vmax tanh(n

T q/ε)
0

]
, h1(x) = ∥p− po∥ −Ro,

kb2(x) = −kb0(x), h2(x) = −h0(x),



Fig. 4. Robot trajectory which used all three backup controllers under our learned switching law. Subfigure (a) shows the robot trajectory,
where direction is indicated by the arrows and the choice of backup controller is indicated by color. Subfigures (b), (c), and (d) show the
segments of the robot trajectory that used kb0,kb1,kb2 respectively. In (b), (c), and (d) we also show the flows of the respective backup
controllers at several robot positions. Notice that in each of (b) (c) (d), the backup controller flow always escapes the obstacle. However,
notice that kb0 may not provide safe evasion from the obstacle in the locations in subfigure (c) as it does for the locations in (b). This
implies that our system chose the correct backup controller depending on several factors, like driver intent and robot position.

where tanh is used to obtain smooth policies with smoothing
parameter ε ∈ R>0, and the vectors n, q, r are given by:

n =
p− po

∥p− po∥
, q =

[
cos θ
sin θ

]
, r =

[
− sin θ
cos θ

]
. (15)

Each policy maintains a forward invariant backup set, i.e.,
the 0-superlevel set of the BCBF h0, h1 and h2. These sets
represent the states where the robot faces away from the
obstacle (for h0), the robot has positive distance from the
obstacle (h1), and it faces towards the obstacle (h2).

Ultimately, the BCBFs enable the robot to maintain safe
behavior. At the same time, the performance can be improved
by switching between the backup policies based on learning.

V. RESULTS

By referring to Fig. 4, it is evident from the alternating col-
ors that our learned reward function selected multiple backup
controllers over a single robot trajectory. Our framework
also selected appropriate backup controllers such that robot
reachability near the obstacle was maximized. Furthermore,
our system maintains the formal safety guarantees from the
BCBF method as demonstrated in Fig. 5, where h was
observed to be positive under input limits. To demonstrate the
reproducibility of these results, further tests were conducted
and documented in the accompanying video, shared in the
caption of Fig. 1. Here, we tested our system in many
scenarios and compared our system’s produced trajectories
to trajectories corresponding to a single backup controller.
The use of our switching framework outperforms the use
of a single backup controller in certain scenarios, and our
system never inhibits the driver from achieving their goal,
while some backup controllers do.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we implemented backup control barrier
functions to ensure safety on a tracked robot platform, and
used driver intention estimation to optimally choose between
multiple backup policies. From our results, we conclude that
this system improves safety and performance by improving
the interaction between the robot and its driver by expanding
the multiple BCBF framework with a learning method.

Fig. 5. Demonstration of system safety during switches between
backup controllers. See that h(x) ≥ 0 and the input constraints are
satisfied (denoted by the gray dashed lines); therefore, our system
maintains safety while better aligning with driver intention.

Several next steps exist for this preliminary framework,
like developing an algorithm to formally compute safe
reachability under multiple backup controllers. Furthermore,
while our framework was demonstrated on a teleoperated
ground vehicle with stationary obstacles, we plan to deploy
our framework on other robots, such as quadrupeds or
drones, with moving obstacles. Finally, various techniques
can be employed to enhance the resilience of standard CBF
constraint (6) against disturbance or model uncertainty, such
as GP-based uncertainty in the CBF constraint [27], [28].
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